What Makes Equitable Connected Partition Easy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10057142" target="_blank" >RIV/00216208:11320/10:10057142 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
What Makes Equitable Connected Partition Easy
Original language description
We study the Equitable Connected Partition problem. We examine the problem from the parameterized complexity perspective with respect to various (aggregate) parameterizations involving such secondary measurements as: (1) the number of partition classes,(2) the treewidth, (3) the pathwidth, (4) the minimum size of a feedback vertex set, (5) the minimum size of a vertex cover, (6) and the maximum number of leaves in a spanning tree of the graph. In particular, we show that the problem is W[1]-hard with respect to the first four combined, while it is fixed-parameter tractable with respect to each of the last two alone. The hardness result holds even for planar graphs. Furthermore, we show that the closely related problem of Equitable Coloring (equitablypartitioning the vertices into a specified number of independent sets) is FPT parameterized by the maximum number of leaves in a spanning tree of the graph.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Parameterized and Exact Computation
ISBN
978-3-642-11268-3
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
—
Publisher name
Springer-Verlag
Place of publication
Berlin, Heidelberger Platz 3, Germany
Event location
Copenhagen, DENMARK
Event date
Sep 10, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000278758300010