All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameterized complexity of fair deletion problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422320" target="_blank" >RIV/00216208:11320/20:10422320 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rMTC1WfaOC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rMTC1WfaOC</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dam.2019.06.001" target="_blank" >10.1016/j.dam.2019.06.001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameterized complexity of fair deletion problems

  • Original language description

    Edge deletion problems are those where the goal is to find a subset of edges such that after its removal the graph satisfies the given graph property. Typically, we want to minimize the number of elements removed. In fair deletion problems, the objective is changed, so the maximum number of deletions in a neighborhood of a single vertex is minimized. We study the parameterized complexity of fair deletion problems concerning the structural parameters such as the tree-width, the path-width, the tree-depth, the size of minimum feedback vertex set, the neighborhood diversity, and the size of minimum vertex cover of graph G. We prove the W[1]-hardness of the fair FO vertex-deletion problem with respect to the combined size of the tree-depth and the minimum feedback vertex set number. Moreover, we show that there is no algorithm for fair FO vertex-deletion problem running in time n(o)((3)root k), where n is the size of the graph and k is the sum of the mentioned parameters, provided that the Exponential Time Hypothesis holds. On the other hand, we present an FPT algorithm for the fair MSO edge-deletion problem parameterized by the size of minimum vertex cover and an FPT algorithm for the fair MSO vertex-deletion problem parameterized by the neighborhood diversity. (C) 2019 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Applied Mathematics

  • ISSN

    0166-218X

  • e-ISSN

  • Volume of the periodical

    278

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    51-61

  • UT code for WoS article

    000528194300005

  • EID of the result in the Scopus database

    2-s2.0-85067294396