All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Parameterized Complexity of Computing Balanced Partitions in Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F15%3A00237632" target="_blank" >RIV/68407700:21240/15:00237632 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/article/10.1007%2Fs00224-014-9557-5" target="_blank" >http://link.springer.com/article/10.1007%2Fs00224-014-9557-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00224-014-9557-5" target="_blank" >10.1007/s00224-014-9557-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Parameterized Complexity of Computing Balanced Partitions in Graphs

  • Original language description

    A balanced partition is a clustering of a graph into a given number of equal-sized parts. For instance, the textsc{Bisection} problem asks to remove at most $k$ edges in order to partition the vertices into two equal-sized parts. We prove that textsc{Bisection} is FPT for the distance to constant cliquewidth if we are given the deletion set. This implies FPT algorithms for some well-studied parameters such as cluster vertex deletion number and feedback vertex set. However, we show that textsc{Bisection}does not admit polynomial-size kernels for these parameters. For the textsc{Vertex Bisection} problem, vertices need to be removed in order to obtain two equal-sized parts. We show that this problem is FPT for the number of removed vertices $k$ if the solution cuts the graph into a constant number $c$ of connected components. The latter condition is unavoidable, since we also prove that textsc{Vertex Bisection} is W[1]-hard w.r.t.~$(k,c)$. Our algorithms for finding bisections can easil

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theory of Computing Systems

  • ISSN

    1432-4350

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    35

  • Pages from-to

    1-35

  • UT code for WoS article

    000358741300001

  • EID of the result in the Scopus database

    2-s2.0-84937191674