On the Parameterized Complexity of Computing Graph Bisections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F13%3A00209350" target="_blank" >RIV/68407700:21240/13:00209350 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007/978-3-642-45043-3_8" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-642-45043-3_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-45043-3_8" target="_blank" >10.1007/978-3-642-45043-3_8</a>
Alternative languages
Result language
angličtina
Original language name
On the Parameterized Complexity of Computing Graph Bisections
Original language description
The Bisection problem asks for a partition of the vertices of a graph into two equally sized sets, while minimizing the cut size. This is the number of edges connecting the two vertex sets. Bisection has been thoroughly studied in the past. However, onlyfew results have been published that consider the parameterized complexity of this problem. We show that Bisection is FPT w.r.t. the minimum cut size if there is an optimum bisection that cuts into a given constant number of connected components. Our algorithm applies to the more general Balanced Biseparator problem where vertices need to be removed instead of edges. We prove that this problem is W[1]-hard w.r.t. the minimum cut size and the number of cut out components. For Bisection we further show that no polynomial-size kernels exist for the cut size parameter. In fact, we show this for all parameters that are polynomial in the input size and that do not increase when taking disjoint unions of graphs. We prove fixed-parameter tract
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-642-45042-6
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
76-87
Publisher name
Springer Science+Business Media
Place of publication
Berlin
Event location
Lubeck
Event date
Jun 19, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—