Smooth Approximations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10057431" target="_blank" >RIV/00216208:11320/10:10057431 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/10:00345050
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Smooth Approximations
Original language description
We prove, among other things, that a Lipschitz (or uniformly continuous) mapping f: X-} Y can be approximated (even in a fine topology) by smooth Lipschitz (resp. uniformly continuous) mapping, if X is a separable Banach space admitting a smooth Lipschitz bump and either X or Y is a separable C(K) space (resp. super-reflexive space). Further, we show how smooth approximation of Lipschitz mappings is closely related to a smooth approximation of C^1-smooth mappings together with their first derivatives. As a corollary we obtain new results on smooth approximation of C^1-smooth mappings together with their first derivatives.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190801" target="_blank" >IAA100190801: Smoothness in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
259
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
—
UT code for WoS article
000277945300001
EID of the result in the Scopus database
—