Extensions of smooth mappings into biduals and weak continuity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00389770" target="_blank" >RIV/67985840:_____/13:00389770 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/13:00201722
Result on the web
<a href="http://dx.doi.org/10.1016/j.aim.2012.11.001" target="_blank" >http://dx.doi.org/10.1016/j.aim.2012.11.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2012.11.001" target="_blank" >10.1016/j.aim.2012.11.001</a>
Alternative languages
Result language
angličtina
Original language name
Extensions of smooth mappings into biduals and weak continuity
Original language description
Our work is based on a number of tools that are of independent interest. We prove, for every pair of Banach spaces X, Y, that any continuous mapping T : B-X -> Y, which is uniformly differentiable of order up to k in the interior of B-X, can be extended,preserving its best smoothness, into a bidual mapping (T) over tilde : B-X** -> Y**. Another main tool is a result of Zippin's type. We show that weakly Cauchy sequences in X = C(K) can be uniformly well approximated by weakly Cauchy sequences from a certain C[0, alpha], alpha is a countable ordinal, subspace of X**.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
234
Issue of the periodical within the volume
Feb 15
Country of publishing house
US - UNITED STATES
Number of pages
35
Pages from-to
453-487
UT code for WoS article
000313405200012
EID of the result in the Scopus database
—