On the coincidence of Pettis and McShane integrals and Hilbert generated spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00351199" target="_blank" >RIV/67985840:_____/10:00351199 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the coincidence of Pettis and McShane integrals and Hilbert generated spaces
Original language description
A Banach space X is called weakly compactly generated if it contains a weakly compact set which is linearly dense in it. X is called Hilbert generated provided that there are a Hilbert space Y and a linear bounded mapping from Y into X whose range is dense in X. A compact space is called Eberlein (uniform Eberlein) if it can be continuously injected into a Banach space (into a Hilbert space) provided with the weak topology. We recall well known facts that a compact space K is Eberlein (uniform Eberlein)if and only if the corresponding Banach space C(K) is weakly compactly generated (Hilbert generated).
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190901" target="_blank" >IAA100190901: Topological and geometric structures in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů