On coincidence of Pettis and McShane integrability
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00443124" target="_blank" >RIV/67985840:_____/15:00443124 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10587-015-0161-x" target="_blank" >http://dx.doi.org/10.1007/s10587-015-0161-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10587-015-0161-x" target="_blank" >10.1007/s10587-015-0161-x</a>
Alternative languages
Result language
angličtina
Original language name
On coincidence of Pettis and McShane integrability
Original language description
R. Deville and J. Rodriguez proved that, for every Hilbert generated space X, every Pettis integrable function f[0,1]X is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space X and a scalarlynull (hence Pettis integrable) function from [0,1] into X, which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from [0,1] (mostly) into C(K) spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces K, that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from [0,1] into C(K) in McShane sense.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
24
Pages from-to
83-106
UT code for WoS article
000352820000004
EID of the result in the Scopus database
2-s2.0-84938091191