Optimal estimates for the fractional Hardyoperator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F15%3A00242128" target="_blank" >RIV/68407700:21110/15:00242128 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4064/sm227-1-1" target="_blank" >http://dx.doi.org/10.4064/sm227-1-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/sm227-1-1" target="_blank" >10.4064/sm227-1-1</a>
Alternative languages
Result language
angličtina
Original language name
Optimal estimates for the fractional Hardyoperator
Original language description
Let A(alpha) f(x) = vertical bar B(0, vertical bar x vertical bar)vertical bar(-alpha/n) integral(B(0,vertical bar x vertical bar)) f(t)dt be the n-dimensional fractional Hardy operator, where 0 < alpha <= n. It is well-known that A(alpha) is bounded from L-p to L-p alpha with p(alpha) = np/(alpha p - np + n) when n (1 - 1/p) < alpha <= n. We improve this result within the framework of Banach function spaces, for instance, weighted Lebesgue spaces and Lorentz spaces. We in fact find a 'source' space S-alpha,S-Y, which is strictly larger than X, and a 'target' space T-Y, which is strictly smaller than Y, under the assumption that A(alpha) is bounded from X into Y and the Hardy-Littlewood maximal operator M is bounded from Y into Y, and prove that A(alpha) is bounded from S-alpha,S-Y into T-Y. We prove optimality results for the action of A(alpha) and the associate operator A(alpha)' on such spaces, as an extension of the results of Mizuta et al. (2013) and Nekvinda and Pick (2011). We a
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0383" target="_blank" >GA201/08/0383: Function Spaces, Weighted Inequalities and Interpolation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Mathematica
ISSN
0039-3223
e-ISSN
—
Volume of the periodical
227
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
19
Pages from-to
1-19
UT code for WoS article
000365157600001
EID of the result in the Scopus database
—