All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimal estimates for the fractional Hardyoperator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F15%3A00242128" target="_blank" >RIV/68407700:21110/15:00242128 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4064/sm227-1-1" target="_blank" >http://dx.doi.org/10.4064/sm227-1-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm227-1-1" target="_blank" >10.4064/sm227-1-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimal estimates for the fractional Hardyoperator

  • Original language description

    Let A(alpha) f(x) = vertical bar B(0, vertical bar x vertical bar)vertical bar(-alpha/n) integral(B(0,vertical bar x vertical bar)) f(t)dt be the n-dimensional fractional Hardy operator, where 0 < alpha <= n. It is well-known that A(alpha) is bounded from L-p to L-p alpha with p(alpha) = np/(alpha p - np + n) when n (1 - 1/p) < alpha <= n. We improve this result within the framework of Banach function spaces, for instance, weighted Lebesgue spaces and Lorentz spaces. We in fact find a 'source' space S-alpha,S-Y, which is strictly larger than X, and a 'target' space T-Y, which is strictly smaller than Y, under the assumption that A(alpha) is bounded from X into Y and the Hardy-Littlewood maximal operator M is bounded from Y into Y, and prove that A(alpha) is bounded from S-alpha,S-Y into T-Y. We prove optimality results for the action of A(alpha) and the associate operator A(alpha)' on such spaces, as an extension of the results of Mizuta et al. (2013) and Nekvinda and Pick (2011). We a

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F08%2F0383" target="_blank" >GA201/08/0383: Function Spaces, Weighted Inequalities and Interpolation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Mathematica

  • ISSN

    0039-3223

  • e-ISSN

  • Volume of the periodical

    227

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    19

  • Pages from-to

    1-19

  • UT code for WoS article

    000365157600001

  • EID of the result in the Scopus database