All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hardy averaging operator on generalized Banach function spaces and duality

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F13%3A00215577" target="_blank" >RIV/68407700:21110/13:00215577 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hardy averaging operator on generalized Banach function spaces and duality

  • Original language description

    Let $Af(x):=frac{1}{|B(0,|x|)|} int_{B(0,|x|)} f(t) dt$ be the $n$-dimensional Hardy averaging operator. It is well known that $A$ is bounded on $Lsp p(Omega)$ with an open set $Omega subset mathbb{R}^n$ whenever $1<pleqinfty$. We improve this result within the framework of generalized Banach function spaces. We in fact find the `source' space $S_X$, which is strictly larger than $X$, and the `target' space $T_X$, which is strictly smaller than $X$, under the assumption that the Hardy-Littlewood maximaloperator $M$ is bounded from $X$ into $X$, and prove that $A$ is bounded from $S_X$ into $T_X$. We prove optimality results for the action of $A$ and its associate operator $A'$ on such spaces and present applications of our results to variable Lebesguespaces $L^{p(cdot)}(Omega)$ , as an extension of cite{NP} and cite{NP2} in the case when $n=1$ and $Omega$ is a bounded interval.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Zeitschrift für Analysis und ihre Anwendungen

  • ISSN

    0232-2064

  • e-ISSN

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    23

  • Pages from-to

    233-255

  • UT code for WoS article

    000320488000007

  • EID of the result in the Scopus database