Optimal estimates for the Hardy averaging operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F10%3A00164774" target="_blank" >RIV/68407700:21110/10:00164774 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/10:10057584
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimal estimates for the Hardy averaging operator
Original language description
Let Af(x) := 1/xint_0^x f(t) dt be the one-dimensional Hardy averaging operator. It is well-known that A is bounded on Lp whenever 1 < p =< inf.. We improve this result in the following sense: we introduce a pair of new function spaces, the 'source' space Sp, which is strictly larger than Lp, and the 'target' space Tp, which is strictly smaller than Lp, and prove that A is bounded from Sp into Tp. Moreover, we show that this result cannot be improved within the environment of solid Banach spaces. We present applications of this result to variable-exponent Lebesgue spaces Lp(x).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
283
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
—
UT code for WoS article
000275649300007
EID of the result in the Scopus database
—