All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An Endpoint Estimate for Rough Maximal Singular Integrals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422101" target="_blank" >RIV/00216208:11320/20:10422101 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aTXscywPxn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aTXscywPxn</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imrn/rny189" target="_blank" >10.1093/imrn/rny189</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An Endpoint Estimate for Rough Maximal Singular Integrals

  • Original language description

    We study the rough maximal singular integral T-Omega(#)(f)(x) = sup(epsilon&gt;0)vertical bar integral(RnB(0,epsilon)) vertical bar y vertical bar(-n)Omega(y/vertical bar y vertical bar)f(x - y)dy vertical bar, where Omega is a function in L-infinity(Sn-1) with vanishing integral. It is well known that the operator is bounded on L-P for 1 &lt; p &lt; infinity, but it is an open question whether it is of the weak type 1-1. We show that is bounded from L(log log L)(2+epsilon) to L-1,L-infinity locally.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LL1203" target="_blank" >LL1203: Properties of functions and mappings in Sobolev spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices

  • ISSN

    1073-7928

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    19

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    6120-6134

  • UT code for WoS article

    000593969100008

  • EID of the result in the Scopus database