An Endpoint Estimate for Rough Maximal Singular Integrals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422101" target="_blank" >RIV/00216208:11320/20:10422101 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aTXscywPxn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aTXscywPxn</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rny189" target="_blank" >10.1093/imrn/rny189</a>
Alternative languages
Result language
angličtina
Original language name
An Endpoint Estimate for Rough Maximal Singular Integrals
Original language description
We study the rough maximal singular integral T-Omega(#)(f)(x) = sup(epsilon>0)vertical bar integral(RnB(0,epsilon)) vertical bar y vertical bar(-n)Omega(y/vertical bar y vertical bar)f(x - y)dy vertical bar, where Omega is a function in L-infinity(Sn-1) with vanishing integral. It is well known that the operator is bounded on L-P for 1 < p < infinity, but it is an open question whether it is of the weak type 1-1. We show that is bounded from L(log log L)(2+epsilon) to L-1,L-infinity locally.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LL1203" target="_blank" >LL1203: Properties of functions and mappings in Sobolev spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Mathematics Research Notices
ISSN
1073-7928
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
19
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
6120-6134
UT code for WoS article
000593969100008
EID of the result in the Scopus database
—