Rough bilinear singular integrals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390749" target="_blank" >RIV/00216208:11320/18:10390749 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.aim.2017.12.013" target="_blank" >https://doi.org/10.1016/j.aim.2017.12.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2017.12.013" target="_blank" >10.1016/j.aim.2017.12.013</a>
Alternative languages
Result language
angličtina
Original language name
Rough bilinear singular integrals
Original language description
We study the rough bilinear singular integral, introduced by Coifman and Meyer [8], T-Omega (f, g)(x) = p.v. integral R-n integral R-n vertical bar(y, z)(-2n) Omega((y, z)/vertical bar(y, z)vertical bar)f(x - y)g(x - z)dydz, when Omega is a function in L-q(S2n-1) with vanishing integral and 2 <= q <= infinity. When q = infinity we obtain boundedness for To from L-p1 (R-n) x L-p2 (R-n) to L-p (R-n) when 1 < p1, p2 < infinity and 1/p = 1/p1 + 1/p2. For q = 2 we obtain that T Omega is bounded from L-2(R-n) x L-2(R-n) x L-1(R-n). For q between 2 and infinity we obtain the analogous boundedness on a set of indices around the point (1/2,1/2,1). To obtain our results we introduce a new bilinear technique based on tensor-type wavelet decompositions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LL1203" target="_blank" >LL1203: Properties of functions and mappings in Sobolev spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
2018
Issue of the periodical within the volume
326
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
54-78
UT code for WoS article
000424852600002
EID of the result in the Scopus database
2-s2.0-85039781161