All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rough bilinear singular integrals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390749" target="_blank" >RIV/00216208:11320/18:10390749 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.aim.2017.12.013" target="_blank" >https://doi.org/10.1016/j.aim.2017.12.013</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2017.12.013" target="_blank" >10.1016/j.aim.2017.12.013</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rough bilinear singular integrals

  • Original language description

    We study the rough bilinear singular integral, introduced by Coifman and Meyer [8], T-Omega (f, g)(x) = p.v. integral R-n integral R-n vertical bar(y, z)(-2n) Omega((y, z)/vertical bar(y, z)vertical bar)f(x - y)g(x - z)dydz, when Omega is a function in L-q(S2n-1) with vanishing integral and 2 &lt;= q &lt;= infinity. When q = infinity we obtain boundedness for To from L-p1 (R-n) x L-p2 (R-n) to L-p (R-n) when 1 &lt; p1, p2 &lt; infinity and 1/p = 1/p1 + 1/p2. For q = 2 we obtain that T Omega is bounded from L-2(R-n) x L-2(R-n) x L-1(R-n). For q between 2 and infinity we obtain the analogous boundedness on a set of indices around the point (1/2,1/2,1). To obtain our results we introduce a new bilinear technique based on tensor-type wavelet decompositions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LL1203" target="_blank" >LL1203: Properties of functions and mappings in Sobolev spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    2018

  • Issue of the periodical within the volume

    326

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    54-78

  • UT code for WoS article

    000424852600002

  • EID of the result in the Scopus database

    2-s2.0-85039781161