All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ITERATING BILINEAR HARDY INEQUALITIES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372629" target="_blank" >RIV/00216208:11320/17:10372629 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1017/S0013091516000602" target="_blank" >http://dx.doi.org/10.1017/S0013091516000602</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0013091516000602" target="_blank" >10.1017/S0013091516000602</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ITERATING BILINEAR HARDY INEQUALITIES

  • Original language description

    An iteration technique for characterizing boundedness of certain types of multilinear operators is presented, reducing the problem to a corresponding linear-operator case. The method gives a simple proof of a characterization of validity of the weighted bilinear Hardy inequality (integral(b)(a) (integral(t)(a) f integral(t)(a) g)(q) w(t) dt)(1/q) &lt;= C (integral(b)(a) f(v1)(p1))(1/p1) (integral(b)(a) f(v2)(p2))(1/p2) for all non-negative f, g on (a, b), for 1 &lt; p1, p2, q &lt; infinity. More equivalent characterizing conditions are presented. The same technique is applied to various further problems, in particular those involving multilinear integral operators of Hardy type.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the Edinburgh Mathematical Society

  • ISSN

    0013-0915

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    955-971

  • UT code for WoS article

    000413770300010

  • EID of the result in the Scopus database

    2-s2.0-85010964808