ITERATING BILINEAR HARDY INEQUALITIES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372629" target="_blank" >RIV/00216208:11320/17:10372629 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S0013091516000602" target="_blank" >http://dx.doi.org/10.1017/S0013091516000602</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0013091516000602" target="_blank" >10.1017/S0013091516000602</a>
Alternative languages
Result language
angličtina
Original language name
ITERATING BILINEAR HARDY INEQUALITIES
Original language description
An iteration technique for characterizing boundedness of certain types of multilinear operators is presented, reducing the problem to a corresponding linear-operator case. The method gives a simple proof of a characterization of validity of the weighted bilinear Hardy inequality (integral(b)(a) (integral(t)(a) f integral(t)(a) g)(q) w(t) dt)(1/q) <= C (integral(b)(a) f(v1)(p1))(1/p1) (integral(b)(a) f(v2)(p2))(1/p2) for all non-negative f, g on (a, b), for 1 < p1, p2, q < infinity. More equivalent characterizing conditions are presented. The same technique is applied to various further problems, in particular those involving multilinear integral operators of Hardy type.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Edinburgh Mathematical Society
ISSN
0013-0915
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
955-971
UT code for WoS article
000413770300010
EID of the result in the Scopus database
2-s2.0-85010964808