All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

BILINEAR WEIGHTED HARDY INEQUALITY FOR NONINCREASING FUNCTIONS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372627" target="_blank" >RIV/00216208:11320/17:10372627 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5565/PUBLMAT_6111_01" target="_blank" >http://dx.doi.org/10.5565/PUBLMAT_6111_01</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5565/PUBLMAT_6111_01" target="_blank" >10.5565/PUBLMAT_6111_01</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    BILINEAR WEIGHTED HARDY INEQUALITY FOR NONINCREASING FUNCTIONS

  • Original language description

    We characterize the validity of the bilinear Hardy inequality for nonincreasing functions vertical bar vertical bar f**g**vertical bar vertical bar L-q(omega) &lt;= C vertical bar vertical bar f vertical bar vertical bar Lambda(p1)(v(1))vertical bar vertical bar g vertical bar vertical bar Lambda(P2)(v(2)), in terms of the weights v(1,)v(2) ,omega, covering the complete range of exponents p(1), p(2), q is an element of (0, infinity]. The problem is solved by reducing it into the iterated Hardy-type inequalities (integral(infinity)(0) (integral(infinity)(0) (g**(t))(alpha) phi(t)dt)(beta backslash alpha) phi(x) dx)(1/beta) &lt;= C(integral(infinity)(0)(g*(x))(gamma) omega(x)dx)(1/gamma), (integral(infinity)(0) (integral(infinity)(0)(g**(t))(alpha) phi(t)dt)(beta backslash alpha) phi(x) dx)(1/)beta &lt;= C(integral(infinity)(0)(g*(x))(gamma) omega(x)dx)(1/gamma), Validity of these inequalities is characterized here for 0 &lt; alpha&lt; beta &lt; infinity and 0 &lt; gamma &lt; infinity. 2010 Mathematics Subject Classification: 26D10, 47G10.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Publicacions Matematiques

  • ISSN

    0214-1493

  • e-ISSN

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    ES - SPAIN

  • Number of pages

    48

  • Pages from-to

    3-50

  • UT code for WoS article

    000396538700001

  • EID of the result in the Scopus database