BILINEAR WEIGHTED HARDY INEQUALITY FOR NONINCREASING FUNCTIONS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372627" target="_blank" >RIV/00216208:11320/17:10372627 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.5565/PUBLMAT_6111_01" target="_blank" >http://dx.doi.org/10.5565/PUBLMAT_6111_01</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5565/PUBLMAT_6111_01" target="_blank" >10.5565/PUBLMAT_6111_01</a>
Alternative languages
Result language
angličtina
Original language name
BILINEAR WEIGHTED HARDY INEQUALITY FOR NONINCREASING FUNCTIONS
Original language description
We characterize the validity of the bilinear Hardy inequality for nonincreasing functions vertical bar vertical bar f**g**vertical bar vertical bar L-q(omega) <= C vertical bar vertical bar f vertical bar vertical bar Lambda(p1)(v(1))vertical bar vertical bar g vertical bar vertical bar Lambda(P2)(v(2)), in terms of the weights v(1,)v(2) ,omega, covering the complete range of exponents p(1), p(2), q is an element of (0, infinity]. The problem is solved by reducing it into the iterated Hardy-type inequalities (integral(infinity)(0) (integral(infinity)(0) (g**(t))(alpha) phi(t)dt)(beta backslash alpha) phi(x) dx)(1/beta) <= C(integral(infinity)(0)(g*(x))(gamma) omega(x)dx)(1/gamma), (integral(infinity)(0) (integral(infinity)(0)(g**(t))(alpha) phi(t)dt)(beta backslash alpha) phi(x) dx)(1/)beta <= C(integral(infinity)(0)(g*(x))(gamma) omega(x)dx)(1/gamma), Validity of these inequalities is characterized here for 0 < alpha< beta < infinity and 0 < gamma < infinity. 2010 Mathematics Subject Classification: 26D10, 47G10.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Publicacions Matematiques
ISSN
0214-1493
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
1
Country of publishing house
ES - SPAIN
Number of pages
48
Pages from-to
3-50
UT code for WoS article
000396538700001
EID of the result in the Scopus database
—