CONVOLUTION IN WEIGHTED LORENTZ SPACES OF TYPE Gamma
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10372620" target="_blank" >RIV/00216208:11320/16:10372620 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.7146/math.scand.a-24187" target="_blank" >http://dx.doi.org/10.7146/math.scand.a-24187</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7146/math.scand.a-24187" target="_blank" >10.7146/math.scand.a-24187</a>
Alternative languages
Result language
angličtina
Original language name
CONVOLUTION IN WEIGHTED LORENTZ SPACES OF TYPE Gamma
Original language description
We characterize boundedness of the convolution operator between weighted Lorentz spaces Gamma(P) (v) and Gamma(q) (w) for the range of parameters p, q is an element of [1, infinity], or p is an element of (0, 1) and q is an element of {1, infinity} or p = infinity and q is an element of (0, 1). We provide Young-type convolution inequalities of the form parallel to f * g parallel to Gamma(q) (omega) <= C parallel to f parallel to Gamma(p) (v) parallel to g parallel to Y, f is an element of Gamma(p)(v), g is an element of Y, characterizing the optimal rearrangement-invariant space Y for which the inequality is satisfied.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Scandinavica
ISSN
0025-5521
e-ISSN
—
Volume of the periodical
119
Issue of the periodical within the volume
1
Country of publishing house
DK - DENMARK
Number of pages
20
Pages from-to
113-132
UT code for WoS article
000383815600007
EID of the result in the Scopus database
—