Convolution in Rearrangement-Invariant Spaces Defined in Terms of Oscillation and the Maximal Function
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10373118" target="_blank" >RIV/00216208:11320/14:10373118 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4171/ZAA/1517" target="_blank" >https://doi.org/10.4171/ZAA/1517</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/ZAA/1517" target="_blank" >10.4171/ZAA/1517</a>
Alternative languages
Result language
angličtina
Original language name
Convolution in Rearrangement-Invariant Spaces Defined in Terms of Oscillation and the Maximal Function
Original language description
We characterize boundedness of a convolution operator with a fixed kernel between the classes S p ( v), de fined in terms of oscillation, and weighted Lorentz spaces Gamma(q)(w), defined in terms of the maximal function, for 0 < p; q <= infinity. We prove corresponding weighted Young-type inequalities of the form parallel to f * g parallel to Gamma(q)(w) <= C parallel to f parallel to S-p(v)parallel to g parallel to Y and characterize the optimal rearrangement-invariant space Y for which these inequalities hold.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeitschrift für Analysis und ihre Anwendung
ISSN
0232-2064
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
369-383
UT code for WoS article
000347639000001
EID of the result in the Scopus database
2-s2.0-84907964840