Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372631" target="_blank" >RIV/00216208:11320/17:10372631 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s13163-017-0230-9" target="_blank" >http://dx.doi.org/10.1007/s13163-017-0230-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13163-017-0230-9" target="_blank" >10.1007/s13163-017-0230-9</a>
Alternative languages
Result language
angličtina
Original language name
Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case
Original language description
Let 1 < p < infinity and 0 < q < p. We prove necessary and sufficient conditions under which the weighted inequality (integral(infinity)(0) (integral(t)(0) f(x)U(x, t) dx)(q) w(t) dt)(1/q) <= C (integral(infinity)(0) f(p)(t)v(t) dt)(1/p), where U is a so-called -regular kernel, holds for all nonnegative measurable functions f on (0, infinity). The conditions have an explicit integral form. Analogous results for the case and for the dual version of the inequality are also presented. The results are applied to close various gaps in the theory of weighted operator inequalities.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista Matematica Complutense
ISSN
1139-1138
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
3
Country of publishing house
ES - SPAIN
Number of pages
41
Pages from-to
547-587
UT code for WoS article
000408650000007
EID of the result in the Scopus database
2-s2.0-85017416303