Weighted estimates for the averaging integral operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00342853" target="_blank" >RIV/67985840:_____/10:00342853 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Weighted estimates for the averaging integral operator
Original language description
Let 1 < p <= q < +infinity and let v, w be weights on (0, +infinity) satisfying" (star) v(x)x(rho) is equivalent to a non-decreasing function on (0, +infinity) for some rho >= 0 and w(x)x](1/q) approximate to [v(x)x](1/p) for all x is an element of (0, +infinity), We prove that if the averaging operator (Af)(x) = 1/x integral(x)(0) f(t)dt, x is an element of (0, +infinity), is bounded from the weighted Lebesgue space L-p(0, +infinity), v) into the weighted Lebesgue space L-q((0, +infinity); w), then there exists epsilon(0) is an element of (0, p - 1) such that the space Lq-epsilon q/p((0, +infinity), w(x)(1+delta)x(delta(1-q/p))x(gamma q/p)) for all epsilon, delta, gamma is an element of [0, epsilon(0)).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Collectanea Mathematica
ISSN
0010-0757
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
3
Country of publishing house
ES - SPAIN
Number of pages
10
Pages from-to
—
UT code for WoS article
000282670300002
EID of the result in the Scopus database
—