All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the volume of unit balls of finite-dimensional Lorentz spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10414142" target="_blank" >RIV/00216208:11320/20:10414142 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/20:00343525

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vjM~4xPKve" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vjM~4xPKve</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jat.2020.105407" target="_blank" >10.1016/j.jat.2020.105407</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the volume of unit balls of finite-dimensional Lorentz spaces

  • Original language description

    We study the volume of unit balls B-p,q(n) of finite-dimensional Lorentz sequence spaces l(p,q)(n). We give an iterative formula for vol(B-p,q(n)) for the weak Lebesgue spaces with q = infinity and explicit formulas for q = 1 and q = infinity. We derive asymptotic results for the nth root of vol(B-p,q(n)) and show that [vol(B-p,q(n)](1/n) asymptotic to(p,q) n(-1/p) for all 0 &lt; p &lt; infinity and 0 &lt; q &lt;= infinity. We study further the ratio between the volume of unit balls of weak Lebesgue spaces and the volume of unit balls of classical Lebesgue spaces. We conclude with an application of the volume estimates and characterize the decay of the entropy numbers of the embedding of the weak Lebesgue space l(p),(n)(infinity) into l(p)(n). (C) 2020 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Approximation Theory

  • ISSN

    0021-9045

  • e-ISSN

  • Volume of the periodical

    255

  • Issue of the periodical within the volume

    July

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    105407

  • UT code for WoS article

    000530032900001

  • EID of the result in the Scopus database

    2-s2.0-85082123587