All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Some s-Numbers of an Integral Operator of Hardy Type on L-p(.) Spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F09%3A00157463" target="_blank" >RIV/68407700:21110/09:00157463 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Some s-Numbers of an Integral Operator of Hardy Type on L-p(.) Spaces

  • Original language description

    Let I = [ab], let p : I -> (1, infinity) be either a step-function or strong log- Holder continuous on I, let L-p(.)(I) be the usual space of Lebesgue type with. variable exponent p, and let T : L-p(.)(I) -> L-p(.)(I) be the operator of Hardy type defined by T f(x) = int(x)(a) f (t)dt. For any n is an element of N, let s(n) denote the nth approximation,Gelfand, Kolmogorov or Bernstein number of T. We show that lim(n ->infinity) ns(n) = 1/2 pi integral(I) {p'(t)p(t)(p(t)-1)}(1/p(t)) sin(pi/p(t))dt. wherep'(t) = p(t)/(p(t) - 1). The proof hinges on estimates of the norm of the embedding id of L-q(.)(I) in L-r(.) (I), where q, r : l -> (1, infinity) are measurable, bounded away from 1 and infinity, and such that, for some epsilon is an element of (0, 1),r(x) <= q(x) <= r(x) + epsilon for all x is an element of I. It is shown that min(|I|, |I |(epsilon)) <= parallel to id parallel to <= epsilon | I |+ epsilon^(-epsilon), a result that has independent interest.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F08%2F0383" target="_blank" >GA201/08/0383: Function Spaces, Weighted Inequalities and Interpolation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF FUNCTIONAL ANALYSIS

  • ISSN

    0022-1236

  • e-ISSN

  • Volume of the periodical

    2009

  • Issue of the periodical within the volume

    257

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

  • UT code for WoS article

    000266293900008

  • EID of the result in the Scopus database