All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Asymptotic behavior of the approximation numbers of the Hardy-type operator from L^p into L^q

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F04%3A01099525" target="_blank" >RIV/68407700:21110/04:01099525 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Asymptotic behavior of the approximation numbers of the Hardy-type operator from L^p into L^q

  • Original language description

    We consider the Hardy-type operator [ left(Tfright)(x) := v(x)int_a^x u(t)f(t) dt, qquad x>a.] and establish properties of $T$ as a map from $L^p(a,b)$ into $L^q(a,b)$ for $1<ple q le 2$, $2le p le q <infty$ and $1<ple 2 le q infty$. The main result is that, with appropriate assumptions on $u$ and $v$, the approximation numbers $a_n(T)$ of $T$ satisfy the inequality [ c_1 int_a^b |uv|^r dt le liminf_{n to infty} n a_n^r(T) le limsup_{nto infty} n a_n^r(T) le c_2 int_a^b |uv|^rdt ] when $1<ple q le 2$ or $2le p le q <infty$, and in the case $1<ple 2 le q <infty$ we have [limsup_{n to infty} n a_n^r(T) le c_{3} int_0^d |u(t) v(t)|^r dt ] and [c_{4} int_0^d |u(t) v(t)|^r dt le liminf_{n to infty} n^{(1/2-1/q)r+1} a^r_n(T), ] where $r={p'q over p'+q}$ and constants $c_1,c_2,c_3,c_4$. Upper and lower estimates for the $l^s$ and $l^{s,k}$ norms of ${a_n(T)}$ are also given.

  • Czech name

    Asymptotické chování approximačních čísel Hardyho operátoru zL^p do L^q

  • Czech description

    Uvažujeme Hardyho operátor [ left(Tfright)(x) := v(x)int_a^x u(t)f(t) dt, qquad x>a.] a stanovíme vlastnosti $T$ jako zobrazení z $L^p(a,b)$ do $L^q(a,b)$ pro $1<ple q le 2$, $2le p le q <infty$ a $1<ple 2 le q infty$. Hlavním výsledkem je,že za vhodných předpokladů na $u$ a $v$, approximační čísla $a_n(T)$ zobrazení $T$ splňují nerovnost [ c_1 int_a^b |uv|^r dt le liminf_{n to infty} n a_n^r(T) le limsup_{nto infty} n a_n^r(T) le c_2 int_a^b |uv|^r dt ] když $1<ple q le 2$nebo $2le p le q <infty$, a v případě $1<ple 2 le q <infty$ máme [limsup_{n to infty} n a_n^r(T) le c_{3} int_0^d |u(t) v(t)|^r dt ] a [c_{4} int_0^d |u(t) v(t)|^r dt le liminf_{n to infty} n^{(1/2-1/q)r+1} a^r_n(T), ] kde $r={p'q over p'+q}$ a konstanty $c_1,c_2,c_3,c_4$. Dolní a horní odhady pro $l^s$ a $l^{s,k}$ normy ${a_n(T)}$ jsou také určeny.

Classification

  • Type

    A - Audiovisual production

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2004

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • ISBN

  • Place of publication

  • Publisher/client name

  • Version

  • Carrier ID