Optimality conditions for a linear differential system with a single delay
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU125888" target="_blank" >RIV/00216305:26220/17:PU125888 - isvavai.cz</a>
Result on the web
<a href="http://mitav.unob.cz/" target="_blank" >http://mitav.unob.cz/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimality conditions for a linear differential system with a single delay
Original language description
In the contribution, linear differential system with a single delay $$frac{dx(t)}{dt}= A_0x(t) + A_1x(t-tau) + bu(t), t geq t_0$$ where A_0, A_1 are $n times n$ constant matrices, $x in R^n$, $b in R^n$, $tau > 0$, $t_0 in R$, $u in R$, is considered. A problem of minimizing (by a suitable control function u(t)) a functional $$I =int _t_0 ^ infty (x^T(t)C_{11}x(t) + x^T (t)C_{12}x(t-tau) + x^T (t-tau)C_{21}x(t) + ^T (t-tau)C_{22}x(t-tau) + du^2(t))dt,$$ where $C_{11}$, $C_{12}$, $C_{21}$, $C_{22}$ are $n times n$ constant matrices, $d > 0$, and the integrand is a positive-definite quadratic form, is considered. To solve the problem, Malkin’s approach and Lyapunov’s second method are utilized.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Matematika, informační technologie a aplikované vědy (MITAV 2017)
ISBN
978-80-7231-417-1
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
1-7
Publisher name
Univerzita obrany v Brně
Place of publication
Brno
Event location
Brno
Event date
Jun 15, 2017
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—