OPTIMALITY CONDITIONS FOR SCALAR LINEAR DIFFERENTIAL SYSTEM
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU125889" target="_blank" >RIV/00216305:26220/17:PU125889 - isvavai.cz</a>
Result on the web
<a href="http://eeict.feec.vutbr.cz/2017/sbornik/EEICT_2017-sbornik-komplet-2.pdf" target="_blank" >http://eeict.feec.vutbr.cz/2017/sbornik/EEICT_2017-sbornik-komplet-2.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
OPTIMALITY CONDITIONS FOR SCALAR LINEAR DIFFERENTIAL SYSTEM
Original language description
In the contribution, for scalar linear differential system $$frac{dx(t)}{dt}= Ax(t) +Bu(t),$$ where $A in R^{nxn}$, $B in R^{nxm}$, $x(t) in R^n$ and $u(t) in R^m$ is a control function, a problem of minimizing a function $$I[x(t),u(t)] =int _t_0 ^ infty (x^T(t)Cx(t) + u^T(t)Du(t))dt,$$ where $C in R^{nxn}$ is a symmetric, positive definite matrix and $D$ is a diagonal control matrix, $D = diag{d_j}$, $d_j > 0$, $j = 1,...,m$, is considered. To solve the problem, Malkin’s approach and Lyapunov’s second method are utilized.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 23nd Conference STUDENT EEICT 2017
ISBN
978-80-214-5496-5
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
629-633
Publisher name
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Place of publication
Brno
Event location
Brno
Event date
Apr 27, 2017
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—