All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A PROBLEM OF FUNCTIONAL MINIMIZING FOR SINGLE DELAYED DIFFERENTIAL SYSTEM

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU125890" target="_blank" >RIV/00216305:26220/17:PU125890 - isvavai.cz</a>

  • Result on the web

    <a href="http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf" target="_blank" >http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A PROBLEM OF FUNCTIONAL MINIMIZING FOR SINGLE DELAYED DIFFERENTIAL SYSTEM

  • Original language description

    In the contribution, a linear differential system with a single delay dx(t)/dt = A(0)x(t) + A(1)x(t - r) + bu(t), t >= t(0) where A(0), A(1) are n x n constant matrices, x is an element of R-n , b is an element of R-n, tau > 0, t(0) is an element of R, u is an element of R, is considered. A problem of minimizing (by a suitable control function u(t)) a functional I = integral(infinity)(t0) (x(T)(t)C(11)x(t) + x(T)(T)C(12)x(t - tau)+x(T)(t - tau) C(21)x(t) + x(T) (t - tau) C(22)x(t - tau) + du(2)(t))dt, where C-11 , C-12, C-21, C-22 are n x n constant matrices, d > 0, and the integrand is a positive-definite quadratic form, is considered. To solve the problem, Malkin's approach and Lyapunov's second method are utilized.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Mathematics, Information Technologies and Applied Sciences 2017

  • ISBN

    978-80-7582-026-6

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    55-62

  • Publisher name

    University of Defence

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jun 15, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000576896800006