All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weighted inequalities for iterated Copson integral operators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421889" target="_blank" >RIV/00216208:11320/20:10421889 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DTYEzR26aW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DTYEzR26aW</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm181016-5-5" target="_blank" >10.4064/sm181016-5-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weighted inequalities for iterated Copson integral operators

  • Original language description

    We solve a long-standing open problem in the theory of weighted inequalities concerning iterated Copson operators. We use a constructive approximation method based on a new discretization principle. As a result, we characterize all weight functions w; v; u on (0,infinity) for which there exists a constant C such that the inequality (integral(infinity)(0)(integral(infinity)(t)(integral(infinity)(s)h(y)dy)(m) u(s)ds)(q/m)omega(t)dt)(1/q) &lt;= C(integral(infinity)(0) h(t)(p)v(t)dt)(1/p) holds for every non-negative measurable function h on (0,infinity), where p,q and m are positive parameters. We assume that p &gt;= 1 because otherwise the inequality cannot hold for non-trivial weights, but otherwise p,q and m are unrestricted.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Mathematica

  • ISSN

    0039-3223

  • e-ISSN

  • Volume of the periodical

    253

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    35

  • Pages from-to

    163-197

  • UT code for WoS article

    000558102000003

  • EID of the result in the Scopus database

    2-s2.0-85092789725