Nonmetric Similarity Search Problems in Very Large Collections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10048617" target="_blank" >RIV/00216208:11320/11:10048617 - isvavai.cz</a>
Result on the web
<a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5767955&tag=1" target="_blank" >http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5767955&tag=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDE.2011.5767955" target="_blank" >10.1109/ICDE.2011.5767955</a>
Alternative languages
Result language
angličtina
Original language name
Nonmetric Similarity Search Problems in Very Large Collections
Original language description
Similarity search is a fundamental problem in many disciplines like multimedia databases, data mining, bioinformatics, computer vision, and pattern recognition, among others. The standard approach for implementing similarity search is to define a dissimilarity measure that satisfies the properties of a metric (strict positiveness, symmetry, and the triangle inequality), and then use it to query for similar objects in large data collections. The advantage of this approach is that there are many index structures (so-called metric access methods) that can be used to efficiently perform the queries. However, a recent survey [91] has shown that similarity measures not holding the metric properties have been widely used for content-based retrieval, because these (usually) more complex similarity measures are more effective and give better results.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0683" target="_blank" >GA201/09/0683: Similarity searching in very large multimedia databases</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IEEE 27th International Conference on Data Engineering (ICDE)
ISBN
978-1-4244-8959-6
ISSN
1063-6382
e-ISSN
—
Number of pages
4
Pages from-to
1362-1365
Publisher name
IEEE
Place of publication
Neuveden
Event location
Hannover, Germany
Event date
Apr 11, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000295216600134