All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving Performance and Accuracy of Local PCA

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10099306" target="_blank" >RIV/00216208:11320/11:10099306 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/11:00183691

  • Result on the web

    <a href="http://dx.doi.org/10.1111/j.1467-8659.2011.02047.x" target="_blank" >http://dx.doi.org/10.1111/j.1467-8659.2011.02047.x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/j.1467-8659.2011.02047.x" target="_blank" >10.1111/j.1467-8659.2011.02047.x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving Performance and Accuracy of Local PCA

  • Original language description

    Local Principal Component Analysis (LPCA) is one of the popular techniques for dimensionality reduction and data compression of large data sets encountered in computer graphics. The LPCA algorithm is a variant of k-means clustering where the repetitive classification of high dimensional data points to their nearest cluster leads to long execution times. The focus of this paper is on improving the efficiency and accuracy of LPCA. We propose a novel SortCluster LPCA algorithm that significantly reduces the cost of the point-cluster classification stage, achieving a speed-up of up to 20. To improve the approximation accuracy, we adopt the k-means++ algorithm [AV07]. We show that similar ideas that lead to the efficiency of our SortCluster LPCA algorithm can be used to accelerate k-means++. The resulting initialization algorithm is faster than purely random seeding while producing substantially more accurate data approximation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computer Graphics Forum

  • ISSN

    0167-7055

  • e-ISSN

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    1903-1910

  • UT code for WoS article

    000296915400005

  • EID of the result in the Scopus database