Improving Performance and Accuracy of Local PCA
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10099306" target="_blank" >RIV/00216208:11320/11:10099306 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/11:00183691
Result on the web
<a href="http://dx.doi.org/10.1111/j.1467-8659.2011.02047.x" target="_blank" >http://dx.doi.org/10.1111/j.1467-8659.2011.02047.x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/j.1467-8659.2011.02047.x" target="_blank" >10.1111/j.1467-8659.2011.02047.x</a>
Alternative languages
Result language
angličtina
Original language name
Improving Performance and Accuracy of Local PCA
Original language description
Local Principal Component Analysis (LPCA) is one of the popular techniques for dimensionality reduction and data compression of large data sets encountered in computer graphics. The LPCA algorithm is a variant of k-means clustering where the repetitive classification of high dimensional data points to their nearest cluster leads to long execution times. The focus of this paper is on improving the efficiency and accuracy of LPCA. We propose a novel SortCluster LPCA algorithm that significantly reduces the cost of the point-cluster classification stage, achieving a speed-up of up to 20. To improve the approximation accuracy, we adopt the k-means++ algorithm [AV07]. We show that similar ideas that lead to the efficiency of our SortCluster LPCA algorithm can be used to accelerate k-means++. The resulting initialization algorithm is faster than purely random seeding while producing substantially more accurate data approximation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Graphics Forum
ISSN
0167-7055
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
1903-1910
UT code for WoS article
000296915400005
EID of the result in the Scopus database
—