High-Dimensional Text Clustering by Dimensionality Reduction and Improved Density Peak
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10245959" target="_blank" >RIV/61989100:27240/20:10245959 - isvavai.cz</a>
Result on the web
<a href="https://www.hindawi.com/journals/wcmc/2020/8881112/" target="_blank" >https://www.hindawi.com/journals/wcmc/2020/8881112/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2020/8881112" target="_blank" >10.1155/2020/8881112</a>
Alternative languages
Result language
angličtina
Original language name
High-Dimensional Text Clustering by Dimensionality Reduction and Improved Density Peak
Original language description
This study focuses on high-dimensional text data clustering, given the inability of K-means to process high-dimensional data and the need to specify the number of clusters and randomly select the initial centers. We propose a Stacked-Random Projection dimensionality reduction framework and an enhanced K-means algorithm DPC-K-means based on the improved density peaks algorithm. The improved density peaks algorithm determines the number of clusters and the initial clustering centers of K-means. Our proposed algorithm is validated using seven text datasets. Experimental results show that this algorithm is suitable for clustering of text data by correcting the defects of K-means.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Wireless Communications & Mobile Computing
ISSN
1530-8669
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
OCTOBER
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
—
UT code for WoS article
000594623600001
EID of the result in the Scopus database
—