All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High-dimensional data clustering algorithm based on stacked-random projection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246918" target="_blank" >RIV/61989100:27240/20:10246918 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-57796-4_38" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-57796-4_38</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-57796-4_38" target="_blank" >10.1007/978-3-030-57796-4_38</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High-dimensional data clustering algorithm based on stacked-random projection

  • Original language description

    This study focuses on high dimensional data, which are characterized by sparsity, redundancy, and high computational complexity. It is impossible to obtain expected results via clustering with traditional algorithms due to the &quot;Curse of Dimensionality&quot;. In this study, we propose a Stacked-Random Projection dimensionality reduction framework and a dimensionality reduction evaluation index based on distance preservation. The algorithm uses Stacked-Random Projection to reduce the dimensionality of the high-dimensional data, and then spectral clustering and fast search and find density peak clustering are used to cluster the processed data. The algorithm is validated using two high-dimensional data sets. Experimental results show that this algorithm can improve the performance of clustering algorithm significantly. (C) Springer Nature Switzerland AG 2021.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 1263

  • ISBN

    978-3-030-57795-7

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Number of pages

    11

  • Pages from-to

    391-401

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Victoria

  • Event date

    Aug 31, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article