Cluster analysis of data with reduced dimensionality: An empirical study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099071" target="_blank" >RIV/61989100:27240/16:86099071 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/16:86099071
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-27644-1_12" target="_blank" >http://dx.doi.org/10.1007/978-3-319-27644-1_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-27644-1_12" target="_blank" >10.1007/978-3-319-27644-1_12</a>
Alternative languages
Result language
angličtina
Original language name
Cluster analysis of data with reduced dimensionality: An empirical study
Original language description
Cluster analysis is an important high-level data mining procedure that can be used to identify meaningful groups of objects within large data sets. Various dimension reduction methods are used to reduce the complexity of data before further processing. The lower-dimensional projections of original data sets can be seen as simplified models of the original data. In this paper, several clustering algorithms are used to process low-dimensional projections of complex data sets and compared with each other. The properties and quality of clustering obtained by each method is evaluated and their suitability to process reduced data sets is assessed. (C) Springer International Publishing Switzerland 2016.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing. Volume 423
ISBN
978-3-319-27642-7
ISSN
2194-5357
e-ISSN
—
Number of pages
12
Pages from-to
121-132
Publisher name
Springer
Place of publication
Heidelberg
Event location
Issyk Kul
Event date
Aug 25, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—