All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Growing neural gas based on data density

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10240396" target="_blank" >RIV/61989100:27240/18:10240396 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/18:10240396

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-99954-8_27" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-99954-8_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-99954-8_27" target="_blank" >10.1007/978-3-319-99954-8_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Growing neural gas based on data density

  • Original language description

    The size, complexity and dimensionality of data collections are ever increasing from the beginning of the computer era. Clustering methods, such as Growing Neural Gas (GNG) [10] that is based on unsupervised learning, is used to reveal structures and to reduce large amounts of raw data. The growth of computational complexity of such clustering method, caused by growing data dimensionality and the specific similarity measurement in a high-dimensional space, reduces the effectiveness of clustering method in many real applications. The growth of computational complexity can be partially solved using the parallel computation facilities, such as High Performance Computing (HPC) cluster with MPI. An effective parallel implementation of GNG is discussed in this paper, while the main focus is on minimizing of interprocess communication which depends on the number of neurons and edges among neurons in the neural network. A new algorithm of adding neurons depending on data density is proposed in the paper. (C) Springer Nature Switzerland AG 2018.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LM2015070" target="_blank" >LM2015070: IT4Innovations National Supercomputing Center</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science. Volume 11127

  • ISBN

    978-3-319-99953-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    10

  • Pages from-to

    314-323

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Olomouc

  • Event date

    Sep 27, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article