All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimalization of parallel GNG by neurons assigned to processes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236161" target="_blank" >RIV/61989100:27240/17:10236161 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/17:10236161

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-59105-6_6" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-59105-6_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-59105-6_6" target="_blank" >10.1007/978-3-319-59105-6_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimalization of parallel GNG by neurons assigned to processes

  • Original language description

    The size, complexity and dimensionality of data collections are ever increasing from the beginning of the computer era. Clustering is used to reveal structures and to reduce large amounts of raw data. There are two main issues when clustering based on unsupervised learning, such as Growing Neural Gas (GNG) [9], is performed on vast high dimensional data collection - the fast growth of computational complexity with respect to growing data dimensionality, and the specific similarity measurement in a high-dimensional space. These two factors reduce the effectiveness of clustering algorithms in many real applications. The growth of computational complexity can be partially solved using the parallel computation facilities, such as High Performance Computing (HPC) cluster with MPI. An effective parallel implementation of GNG is discussed in this paper, while the main focus is on minimizing of interprocess communication. The achieved speed-up was better than previous approach and the results from the standard and parallel version of GNG are same.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/LM2015070" target="_blank" >LM2015070: IT4Innovations National Supercomputing Center</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science. Volume 10244

  • ISBN

    978-3-319-59104-9

  • ISSN

    0302-9743

  • e-ISSN

    neuvedeno

  • Number of pages

    10

  • Pages from-to

    63-72

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Białystok

  • Event date

    Jun 16, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article