Disjoint essential sets of implicates of a CQ Horn function
Result description
In this paper we study a class of CQ Horn functions introduced in Boros et al. (2010). We prove that given a CQ Horn function f, the maximal number of pairwise disjoint essential sets of implicates of f equals the minimum number of clauses in a CNF representing f. In other words, we prove that the maximum number of pairwise disjoint essential sets of implicates of f constitutes a tight lower bound on the size (the number of clauses) of any CNF representation of f.
Keywords
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Disjoint essential sets of implicates of a CQ Horn function
Original language description
In this paper we study a class of CQ Horn functions introduced in Boros et al. (2010). We prove that given a CQ Horn function f, the maximal number of pairwise disjoint essential sets of implicates of f equals the minimum number of clauses in a CNF representing f. In other words, we prove that the maximum number of pairwise disjoint essential sets of implicates of f constitutes a tight lower bound on the size (the number of clauses) of any CNF representation of f.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Mathematics and Artificial Intelligence
ISSN
1012-2443
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
231-244
UT code for WoS article
000297588000005
EID of the result in the Scopus database
—
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BA - General mathematics
Year of implementation
2011