A decomposition method for CNF minimality proofs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10144058" target="_blank" >RIV/00216208:11320/13:10144058 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2013.09.016" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2013.09.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2013.09.016" target="_blank" >10.1016/j.tcs.2013.09.016</a>
Alternative languages
Result language
angličtina
Original language name
A decomposition method for CNF minimality proofs
Original language description
A CNF is minimal if no shorter CNF representing the same function exists, where by CNF length we mean either the number of clauses or the total number of literals (sum of clause lengths). In this paper we develop a decomposition approach that can be in certain situations applied to a CNF formula when proving its minimality. We give two examples in which this decomposition approach is used. Both examples deal with pure Horn minimization, a problem defined as follows: given a pure Horn CNF, construct a logically equivalent pure Horn CNF which is the shortest possible (either w.r.t. the number of clauses or w.r.t. the total number of literals). Both presented examples give alternative proofs of known complexity results for pure Horn minimization.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F10%2F1188" target="_blank" >GAP202/10/1188: KnowSched: Knowledge Techniques in Scheduling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
510
Issue of the periodical within the volume
říjen
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
111-126
UT code for WoS article
000328296800007
EID of the result in the Scopus database
—