Catching a Fast Robber on Interval Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104228" target="_blank" >RIV/00216208:11320/11:10104228 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-20877-5_35" target="_blank" >http://dx.doi.org/10.1007/978-3-642-20877-5_35</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-20877-5_35" target="_blank" >10.1007/978-3-642-20877-5_35</a>
Alternative languages
Result language
angličtina
Original language name
Catching a Fast Robber on Interval Graphs
Original language description
We analyse the Cops and oo-fast Robber game on the class of interval graphs and show it to be polynomially decidable on such graphs. This solves an open problem posed in paper "Pursuing a fast robber on a graph" by Fomin et al. [4] The game is known to be already NP-hard on chordal graphs and split-graphs. The game is played by two players, one controlling k cops, the other a robber. The players alternate in turns, all the cops move at once to distance at most one, the robber moves along any cop-free path. Cops win by capturing the robber, the robber by avoiding capture. The analysis relies on the properties of an interval representation of the graph. We show that while the game-state graph is generally exponential, every cops'' move can be decomposedinto simple moves of three types, and the states are reduced to those defined by certain cuts of the interval representation. This gives a restricted game equivalent to the original one together with a winning strategy computable in polyn
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
6648
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
353-364
UT code for WoS article
—
EID of the result in the Scopus database
—