All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the optimality of the Arf invariant formula for graph polynomials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104298" target="_blank" >RIV/00216208:11320/11:10104298 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.aim.2010.06.021" target="_blank" >http://dx.doi.org/10.1016/j.aim.2010.06.021</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2010.06.021" target="_blank" >10.1016/j.aim.2010.06.021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the optimality of the Arf invariant formula for graph polynomials

  • Original language description

    We prove optimality of the Arf invariant formula for the generating function of even subgraphs, or, equivalently, the Ising partition function, of a graph. It is shown that the Ising partition function has an exponential additive determinantal complexity. This provides one of the first exponential complexity lower bounds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    226

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    332-349

  • UT code for WoS article

    000283902900013

  • EID of the result in the Scopus database