Special Issue on HOMOMORPHISMS AND LIMITS: Preface
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104606" target="_blank" >RIV/00216208:11320/11:10104606 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2011.03.018" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2011.03.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2011.03.018" target="_blank" >10.1016/j.ejc.2011.03.018</a>
Alternative languages
Result language
angličtina
Original language name
Special Issue on HOMOMORPHISMS AND LIMITS: Preface
Original language description
Is there a notion of limit for growing graph sequences? What kind of object is this limit? Which graph parameters behave "continuously" when passing to the limit? Limits of graph sequences can be defined in more than one setting. The case when the graphsin question are dense is best understood. In this case, convergence and limits were defined by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi (2006), and the ensuing theory shed new light on graph homomorphisms, Szemerédi''s regularity lemma, quasi-random graphs, graph testing and extremal graph theory.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů