Theory of limits of sequences of Latin squares
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00508790" target="_blank" >RIV/67985840:_____/19:00508790 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14330/19:00113863
Result on the web
<a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1238" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1238</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Theory of limits of sequences of Latin squares
Original language description
We build up a limit theory for sequences of Latin squares, which parallels the theory of limits of dense graph sequences. Our limit objects, which we call Latinons, are certain two variable functions whose values are probability distributions on [0,1]. Left-convergence is defined using densities of k by k subpatterns in finite Latin squares, which extends to Latinons. We also provide counterparts to the cut distance, and prove a counting lemma, and an inverse counting lemma.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ18-01472Y" target="_blank" >GJ18-01472Y: Graph limits and inhomogeneous random graphs</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Universitatis Comenianae
ISSN
0231-6986
e-ISSN
—
Volume of the periodical
88
Issue of the periodical within the volume
3
Country of publishing house
SK - SLOVAKIA
Number of pages
8
Pages from-to
709-716
UT code for WoS article
000484349000055
EID of the result in the Scopus database
2-s2.0-85073769981