All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Theory of limits of sequences of Latin squares

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00508790" target="_blank" >RIV/67985840:_____/19:00508790 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14330/19:00113863

  • Result on the web

    <a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1238" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1238</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Theory of limits of sequences of Latin squares

  • Original language description

    We build up a limit theory for sequences of Latin squares, which parallels the theory of limits of dense graph sequences. Our limit objects, which we call Latinons, are certain two variable functions whose values are probability distributions on [0,1]. Left-convergence is defined using densities of k by k subpatterns in finite Latin squares, which extends to Latinons. We also provide counterparts to the cut distance, and prove a counting lemma, and an inverse counting lemma.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-01472Y" target="_blank" >GJ18-01472Y: Graph limits and inhomogeneous random graphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Mathematica Universitatis Comenianae

  • ISSN

    0231-6986

  • e-ISSN

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    8

  • Pages from-to

    709-716

  • UT code for WoS article

    000484349000055

  • EID of the result in the Scopus database

    2-s2.0-85073769981