All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On nowhere dense graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104609" target="_blank" >RIV/00216208:11320/11:10104609 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.ejc.2011.01.006" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2011.01.006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2011.01.006" target="_blank" >10.1016/j.ejc.2011.01.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On nowhere dense graphs

  • Original language description

    In this paper, we define and analyze the nowhere dense classes of graphs. This notion is a common generalization of proper minor closed classes, classes of graphs with bounded degree, locally planar graphs, classes with bounded expansion, to name just afew classes which are studied extensively in combinatorial and computer science contexts. In this paper, we show that this concept leads to a classification of general classes of graphs and to the dichotomy between nowhere dense and somewhere dense classes. This classification is surprisingly stable as it can be expressed in terms of the most commonly used basic combinatorial parameters, such as the independence number a, the clique number omega, and the chromatic number x. The remarkable stability of this notion and its robustness has a number of applications to mathematical logic, complexity of algorithms, and combinatorics. We also express the nowhere dense versus somewhere dense dichotomy in terms of edge densities as a trichotomy t

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    600-617

  • UT code for WoS article

    000289132300009

  • EID of the result in the Scopus database