Nowhere Dense Graph Classes and Dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10422243" target="_blank" >RIV/00216208:11320/19:10422243 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YQzK7FUFN2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YQzK7FUFN2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00493-019-3892-8" target="_blank" >10.1007/s00493-019-3892-8</a>
Alternative languages
Result language
angličtina
Original language name
Nowhere Dense Graph Classes and Dimension
Original language description
Nowhere dense graph classes provide one of the least restrictive notions of sparsity for graphs. Several equivalent characterizations of nowhere dense classes have been obtained over the years, using a wide range of combinatorial objects. In this paper we establish a new characterization of nowhere dense classes, in terms of poset dimension: A monotone graph class is nowhere dense if and only if for every h > 1 and every epsilon > 0, posets of height at most h with n elements and whose cover graphs are in the class have dimension O(n(epsilon)).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LL1201" target="_blank" >LL1201: Complex Structures: Regularities in Combinatorics and Discrete Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorica
ISSN
0209-9683
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
25
Pages from-to
1055-1079
UT code for WoS article
000488910800005
EID of the result in the Scopus database
2-s2.0-85074384530