All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A note on counting flows in signed graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405098" target="_blank" >RIV/00216208:11320/19:10405098 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FrjiY9Tbnv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FrjiY9Tbnv</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A note on counting flows in signed graphs

  • Original language description

    Tutte initiated the study of nowhere-zero flows and proved the following fundamental theorem: For every graph G there is a polynomial f so that for every abelian group Gamma of order n, the number of nowhere-zero Gamma-flows in G is f (n). For signed graphs (which have bidirected orientations), the situation is more subtle. For a finite group Gamma, let epsilon(2)(Gamma) be the largest integer d so that Gamma has a subgroup isomorphic to Z(2)(d). We prove that for every signed graph G and d &gt;= 0 there is a polynomial f(d) so that f(d) (n) is the number of nowhere-zero Gamma-flows in G for every abelian group Gamma with epsilon(2)(Gamma) = d and vertical bar Gamma vertical bar = 2(d)n. Beck and Zaslaysky [JCTB 2006] had previously established the special case of this result when d = 0 (i.e., when Gamma has odd order).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Combinatorics

  • ISSN

    1077-8926

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    P2.38

  • UT code for WoS article

    000470020300010

  • EID of the result in the Scopus database

    2-s2.0-85067263233