All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON ORDERED RAMSEY NUMBERS OF TRIPARTITE 3-UNIFORM HYPERGRAPHS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453258" target="_blank" >RIV/00216208:11320/22:10453258 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JxGzS2gVCU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JxGzS2gVCU</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/21M1404958" target="_blank" >10.1137/21M1404958</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON ORDERED RAMSEY NUMBERS OF TRIPARTITE 3-UNIFORM HYPERGRAPHS

  • Original language description

    For an integer k &gt;= 2, an ordered k-uniform hypergraph H = (H, &lt;) is a k-uniform hypergraph H together with a fixed linear ordering &lt; of its vertex set. The ordered Ramsey number (R) over bar (H, G) of two ordered k-uniform hypergraphs H and G is the smallest N is an element of N such that every red-blue coloring of the hyperedges of the ordered complete k-uniform hypergraph K-N((k)) on N vertices contains a blue copy of H or a red copy of G. The ordered Ramsey numbers are quite extensively studied for ordered graphs, but little is known about ordered hypergraphs of higher uniformity. We provide some of the first nontrivial estimates on ordered Ramsey numbers of ordered 3-uniform hypergraphs. In particular, we prove that for all d, n is an element of N and for every ordered 3-uniform hypergraph H on n vertices with maximum degree d and with interval chromatic number 3 there is an epsilon = epsilon(d) &gt; 0 such that (R) over bar (H, H) &lt;= 2(O)(n(2)(-epsilon)). In fact, we prove this upper bound for the number (R) over bar (G, K-3((3))(n)), where G is an ordered 3-uniform hypergraph with n vertices and maximum degree d, and K-3((3))(n) is the ordered complete tripartite hypergraph with consecutive color classes of size n. We show that this bound is not far from the truth by proving (R) over bar (H, K-3((3))(n)) &gt;= 2(Omega(n log n)) for some fixed ordered 3-uniform hypergraph H.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

    1095-7146

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    214-228

  • UT code for WoS article

    000778502000011

  • EID of the result in the Scopus database

    2-s2.0-85130609169