On Ordered Ramsey Numbers of Tripartite 3-Uniform Hypergraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436871" target="_blank" >RIV/00216208:11320/21:10436871 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-83823-2_23" target="_blank" >https://doi.org/10.1007/978-3-030-83823-2_23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-83823-2_23" target="_blank" >10.1007/978-3-030-83823-2_23</a>
Alternative languages
Result language
angličtina
Original language name
On Ordered Ramsey Numbers of Tripartite 3-Uniform Hypergraphs
Original language description
For an integer $k geq 2$, an emph{ordered $k$-uniform hypergraph} $mathcal{H}=(H,<)$ is a $k$-uniform hypergraph $H$ together with a fixed linear ordering $<$ of its vertex set. The emph{ordered Ramsey number} $overline{R}(mathcal{H},mathcal{G})$ of two ordered $k$-uniform hypergraphs $mathcal{H}$ and $mathcal{G}$ is the smallest $N in mathbb{N}$ such that every red-blue coloring of the hyperedges of the ordered complete $k$-uniform hypergraph $mathcal{K}^{(k)}_N$ on $N$ vertices contains a blue copy of $mathcal{H}$ or a red copy of $mathcal{G}$. The ordered Ramsey numbers are quite extensively studied for ordered graphs, but little is known about ordered hypergraphs of higher uniformity. We provide some of the first nontrivial estimates on ordered Ramsey numbers of ordered 3-uniform hypergraphs. In particular, we prove that for all $d,n in mathbb{N}$ and for every ordered $3$-uniform hypergraph $mathcal{H}$ on $n$ vertices with maximum degree $d$ and with interval chromatic number $3$ there is an $varepsilon=varepsilon(d)>0$ such that $$overline{R}(mathcal{H},mathcal{H}) leq 2^{O(n^{2-varepsilon})}.$$ In fact, we prove this upper bound for the number $overline{R}(mathcal{G},mathcal{K}^{(3)}_3(n))$, where $mathcal{G}$ is an ordered 3-uniform hypergraph with $n$ vertices and maximum degree $d$ and $mathcal{K}^{(3)}_3(n)$ is the ordered complete tripartite hypergraph with consecutive color classes of size $n$. We show that this bound is not far from the truth by proving $overline{R}(mathcal{H},mathcal{K}^{(3)}_3(n)) geq 2^{Omega(nlog{n})}$ for some fixed ordered $3$-uniform hypergraph $mathcal{H}$.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Extended Abstracts EuroComb 2021
ISBN
978-3-030-83823-2
ISSN
2297-0215
e-ISSN
2297-024X
Number of pages
6
Pages from-to
142-147
Publisher name
Springer International Publishing
Place of publication
neuveden
Event location
Barcelona
Event date
Sep 6, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—