All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Ordered Ramsey Numbers of Tripartite 3-Uniform Hypergraphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436871" target="_blank" >RIV/00216208:11320/21:10436871 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-83823-2_23" target="_blank" >https://doi.org/10.1007/978-3-030-83823-2_23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-83823-2_23" target="_blank" >10.1007/978-3-030-83823-2_23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Ordered Ramsey Numbers of Tripartite 3-Uniform Hypergraphs

  • Original language description

    For an integer $k geq 2$, an emph{ordered $k$-uniform hypergraph} $mathcal{H}=(H,&lt;)$ is a $k$-uniform hypergraph $H$ together with a fixed linear ordering $&lt;$ of its vertex set. The emph{ordered Ramsey number} $overline{R}(mathcal{H},mathcal{G})$ of two ordered $k$-uniform hypergraphs $mathcal{H}$ and $mathcal{G}$ is the smallest $N in mathbb{N}$ such that every red-blue coloring of the hyperedges of the ordered complete $k$-uniform hypergraph $mathcal{K}^{(k)}_N$ on $N$ vertices contains a blue copy of $mathcal{H}$ or a red copy of $mathcal{G}$. The ordered Ramsey numbers are quite extensively studied for ordered graphs, but little is known about ordered hypergraphs of higher uniformity. We provide some of the first nontrivial estimates on ordered Ramsey numbers of ordered 3-uniform hypergraphs. In particular, we prove that for all $d,n in mathbb{N}$ and for every ordered $3$-uniform hypergraph $mathcal{H}$ on $n$ vertices with maximum degree $d$ and with interval chromatic number $3$ there is an $varepsilon=varepsilon(d)&gt;0$ such that $$overline{R}(mathcal{H},mathcal{H}) leq 2^{O(n^{2-varepsilon})}.$$ In fact, we prove this upper bound for the number $overline{R}(mathcal{G},mathcal{K}^{(3)}_3(n))$, where $mathcal{G}$ is an ordered 3-uniform hypergraph with $n$ vertices and maximum degree $d$ and $mathcal{K}^{(3)}_3(n)$ is the ordered complete tripartite hypergraph with consecutive color classes of size $n$. We show that this bound is not far from the truth by proving $overline{R}(mathcal{H},mathcal{K}^{(3)}_3(n)) geq 2^{Omega(nlog{n})}$ for some fixed ordered $3$-uniform hypergraph $mathcal{H}$.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Extended Abstracts EuroComb 2021

  • ISBN

    978-3-030-83823-2

  • ISSN

    2297-0215

  • e-ISSN

    2297-024X

  • Number of pages

    6

  • Pages from-to

    142-147

  • Publisher name

    Springer International Publishing

  • Place of publication

    neuveden

  • Event location

    Barcelona

  • Event date

    Sep 6, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article