On Induced Online Ramsey Number of Paths, Cycles, and Trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404271" target="_blank" >RIV/00216208:11320/19:10404271 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-19955-5_6" target="_blank" >https://doi.org/10.1007/978-3-030-19955-5_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-19955-5_6" target="_blank" >10.1007/978-3-030-19955-5_6</a>
Alternative languages
Result language
angličtina
Original language name
On Induced Online Ramsey Number of Paths, Cycles, and Trees
Original language description
An online Ramsey game is a game between Builder and Painter, alternating in turns. They are given a fixed graph H and a an infinite set of independent vertices G. In each round Builder draws a new edge in G and Painter colors it either red or blue. Builder wins if after some finite round there is a monochromatic copy of the graph H, otherwise Painter wins. The online Ramsey number (r) over tilde (H) is the minimum number of rounds such that Builder can force a monochromatic copy of H in G. This is an analogy to the size-Ramsey number (r) over bar (H) defined as the minimum number such that there exists graph G with (r) over bar (H) edges where for any edge two-coloring G contains a monochromatic copy of H. In this extended abstract, we introduce the concept of induced online Ramsey numbers: the induced online Ramsey number (r) over tilde (ind)(H) is the minimum number of rounds Builder can force an induced monochromatic copy of H in G. We prove asymptotically tight bounds on the induced online Ramsey numbers of paths, cycles and two families of trees. Moreover, we provide a result analogous to Conlon [On-line Ramsey Numbers, SIAM J. Discr. Math. 2009], showing that there is an infinite family of trees T-1, T-2,..., vertical bar T-i vertical bar < vertical bar Ti+1 vertical bar for i >= 1, such that (i ->infinity)lim <(r)over tilde>(T-i)/(r) over bar (T-i) = 0.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
COMPUTER SCIENCE - THEORY AND APPLICATIONS
ISBN
978-3-030-19955-5
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
10
Pages from-to
60-69
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Novosibirsk
Event date
Jul 1, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000490894900006