All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Induced Online Ramsey Number of Paths, Cycles, and Trees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404271" target="_blank" >RIV/00216208:11320/19:10404271 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-19955-5_6" target="_blank" >https://doi.org/10.1007/978-3-030-19955-5_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-19955-5_6" target="_blank" >10.1007/978-3-030-19955-5_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Induced Online Ramsey Number of Paths, Cycles, and Trees

  • Original language description

    An online Ramsey game is a game between Builder and Painter, alternating in turns. They are given a fixed graph H and a an infinite set of independent vertices G. In each round Builder draws a new edge in G and Painter colors it either red or blue. Builder wins if after some finite round there is a monochromatic copy of the graph H, otherwise Painter wins. The online Ramsey number (r) over tilde (H) is the minimum number of rounds such that Builder can force a monochromatic copy of H in G. This is an analogy to the size-Ramsey number (r) over bar (H) defined as the minimum number such that there exists graph G with (r) over bar (H) edges where for any edge two-coloring G contains a monochromatic copy of H. In this extended abstract, we introduce the concept of induced online Ramsey numbers: the induced online Ramsey number (r) over tilde (ind)(H) is the minimum number of rounds Builder can force an induced monochromatic copy of H in G. We prove asymptotically tight bounds on the induced online Ramsey numbers of paths, cycles and two families of trees. Moreover, we provide a result analogous to Conlon [On-line Ramsey Numbers, SIAM J. Discr. Math. 2009], showing that there is an infinite family of trees T-1, T-2,..., vertical bar T-i vertical bar &lt; vertical bar Ti+1 vertical bar for i &gt;= 1, such that (i -&gt;infinity)lim &lt;(r)over tilde&gt;(T-i)/(r) over bar (T-i) = 0.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    COMPUTER SCIENCE - THEORY AND APPLICATIONS

  • ISBN

    978-3-030-19955-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    10

  • Pages from-to

    60-69

  • Publisher name

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Novosibirsk

  • Event date

    Jul 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000490894900006