On Induced Online Ramsey Number of Paths, Cycles, and Trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00333848" target="_blank" >RIV/68407700:21240/19:00333848 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-19955-5_6" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-19955-5_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-19955-5_6" target="_blank" >10.1007/978-3-030-19955-5_6</a>
Alternative languages
Result language
angličtina
Original language name
On Induced Online Ramsey Number of Paths, Cycles, and Trees
Original language description
An online Ramsey game is a game between Builder and Painter, alternating in turns. They are given a fixed graph $H$ and a an infinite set of independent vertices $G$. In each round Builder draws a new edge in $G$ and Painter colors it either red or blue. Builder wins if after some finite round there is a monochromatic copy of the graph $H$, otherwise Painter wins. The online Ramsey number $widetilde{r}(H)$ is the minimum number of rounds such that Builder can force a monochromatic copy of $H$ in $G$. This is an analogy to the size-Ramsey number $overline{r}(H)$ defined as the minimum number such that there exists graph $G$ with $overline{r}(H)$ edges where for any edge two-coloring $G$ contains a monochromatic copy of $H$. In this extended abstract, we introduce the concept of induced online Ramsey numbers: the induced online Ramsey number $overline{r}_{ind}(H)$ is the minimum number of rounds Builder can force an induced monochromatic copy of $H$ in $G$. We prove asymptotically tight bounds on the induced online Ramsey numbers of paths, cycles and two families of trees. Moreover, we provide a result analogous to Conlon [On-line Ramsey Numbers, SIAM J. Discr. Math. 2009], showing that there is an infinite family of trees $T_1,T_2,dots$, $|T_i|<|T_{i+1}|$ for $ige1$, such that [ lim_{itoinfty} frac{widetilde{r}(T_i)}{overline{r}(T_i)} = 0. ]
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
The 14th International Computer Science Symposium in Russia
ISBN
978-3-030-19954-8
ISSN
0302-9743
e-ISSN
—
Number of pages
10
Pages from-to
60-69
Publisher name
Springer, Cham
Place of publication
—
Event location
Novosibirsk
Event date
Jul 1, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000490894900006