ON DENSITY OF Z3-FLOW-CRITICAL GRAPHS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473772" target="_blank" >RIV/00216208:11320/23:10473772 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FBKjnN-yPp" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FBKjnN-yPp</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M1496529" target="_blank" >10.1137/22M1496529</a>
Alternative languages
Result language
angličtina
Original language name
ON DENSITY OF Z3-FLOW-CRITICAL GRAPHS
Original language description
For an abelian group Gamma , a graph G is said to be Gamma-flow-critical if G does not admit a nowhere-zero Gamma-flow, but for each edge e in E(G), the contraction G/e has a nowhere-zero Gamma-flow. We obtain a bound on the density of Z3-flow-critical graphs drawn on a fixed surface, generalizing the planar case of the bound on the density of 4-critical graphs by Kostochka and Yancey.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-17398S" target="_blank" >GA22-17398S: Flows and cycles in graphs on surfaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
1095-7146
Volume of the periodical
37
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
699-717
UT code for WoS article
001041790200004
EID of the result in the Scopus database
2-s2.0-85165742616