Quasi-equational bases for graphs of semigroups,monoids and groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10105162" target="_blank" >RIV/00216208:11320/11:10105162 - isvavai.cz</a>
Result on the web
<a href="http://10.1007/s00233-010-9268-4" target="_blank" >http://10.1007/s00233-010-9268-4</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Quasi-equational bases for graphs of semigroups,monoids and groups
Original language description
The graph of an algebra is defined as a relational structure that consists of the graphs induced by all basic operation. The paper is concerend with the questione whether there exists a finite basis of quasi-identities for the quasivariety that is generated by graphs of a given class of algebras. It is proved that no such basis exists if the class consists of semigroups one of which is a nontrivial semigroup that possesses a neutral element. The same result is true for a nontrivial class of monoids or groups.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC505" target="_blank" >LC505: Eduard Čech Center for Algebra and Geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Semigroup Forum
ISSN
0037-1912
e-ISSN
—
Volume of the periodical
2011
Issue of the periodical within the volume
82
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
296-306
UT code for WoS article
000288816300008
EID of the result in the Scopus database
—