Point simpliciality in Choquet theory on nonmetrizable compact spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10105546" target="_blank" >RIV/00216208:11320/11:10105546 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.bulsci.2011.01.002" target="_blank" >http://dx.doi.org/10.1016/j.bulsci.2011.01.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bulsci.2011.01.002" target="_blank" >10.1016/j.bulsci.2011.01.002</a>
Alternative languages
Result language
angličtina
Original language name
Point simpliciality in Choquet theory on nonmetrizable compact spaces
Original language description
Let H be a function space on a compact space K. The set of simpliciality of H is the set of all points of K for which there exists a unique maximal representing measure. Properties of this set were studied by M. Bačák in the paper Point simpliciality inChoquet representation theory, Illinois J. Math. 53 (2009) 289-302, mainly for K metrizable. We study properties of the set of simpliciality for K nonmetrizable.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0388" target="_blank" >GA201/07/0388: Modern methods in potential theory and function spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin des Sciences Mathematiques
ISSN
0007-4497
e-ISSN
—
Volume of the periodical
135
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
312-323
UT code for WoS article
000290875700006
EID of the result in the Scopus database
—