Strong submodules of almost projective modules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10107682" target="_blank" >RIV/00216208:11320/11:10107682 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Strong submodules of almost projective modules
Original language description
The structure of almost projective modules can be better understood in the case when the following Condition (P) holds: The union of each countable pure chain of projective modules is projective. We prove this condition, and its generalization to pure-projective modules, for all countable rings, using the new notion of a strong submodule of the union. However, we also show that Condition (P) fails for all Prüfer domains of finite character with uncountable spectrum, and in particular, for the polynomialring KTxU, where K is an uncountable field. One can even prescribe the 0-invariant of the union. Our results generalize earlier work of Hill,and complement recent papers by Macías-Díaz, Fuchs, and Rangaswamy.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0816" target="_blank" >GA201/09/0816: Algebraic Methods in the Representation Theory (Approximations, Realizations, and Constraints)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pacific Journal of Mathematics
ISSN
0030-8730
e-ISSN
—
Volume of the periodical
254
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
73-87
UT code for WoS article
—
EID of the result in the Scopus database
—